摘要
二氧化钛(TiO2)半导体因无毒、化学稳定性佳、光催化活性高、无二次污染、廉价易得的特点,广泛应用在光催化材料、光伏材料、锂离子电池材料和气敏材料等领域,具有较好的应用前景。作为光催化领域的研究热点,TiO2光催化剂太阳能利用率低的难点问题影响着其光催化效率,限制了TiO2的应用。本文介绍了在TiO2半导体光催化材料中通过降低禁带宽度、增大催化剂与污染物接触面积、抑制光生电子-空穴复合方式提升其光催化性能的改性策略,并对在其基础上衍生出更多更优秀的改性策略进行了展望。
关键词: 光催化;TiO2;改性
Abstract
Titanium dioxide (TiO2) semiconductor is widely used in the fields of photocatalytic materials, photovoltaic materials, lithium ion battery materials, and gas sensitive materials due to its characteristics of non-toxicity, good chemical stability, high photocatalytic activity, no secondary pollution, cheap and easy to obtain, and has a good application prospect. As a research hotspot in the field of photocatalysis, the common difficulty of photogenerated electrons and holes easily recombination in photocatalyst also directly affects its photocatalytic efficiency and limits the application of TiO2. This paper introduces the modification strategies to improve the photocatalytic performance of TiO2 semiconductor photocatalytic materials by reducing the width of the band gap, increasing the contact area of the catalyst and the pollutant, and inhibiting the photogenerated electron-hole composite, and proposes more excellent modification strategies.
Key words: Photocatalysis; TiO2; Modification
参考文献 References
[1] Ge H, Xu F, Cheng B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2 production photocatalyst[J]. ChemCatChem, 2019, 11(24): 6301-6309.
[2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[3] Shirai K, Fazio G, Sugimoto T, et al. Water-assisted hole trapping at the highly curved surface of nano-TiO2 photocatalyst[J]. Journal of the American Chemical Society, 2018, 140(4): 1415-1422.
[4] Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414: 625-627.
[5] Linsebigler A L. Photocatalysis on TiO2 surfaces: principles, mechanism, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758.
[6] Jo W K, Kumarb S, Isaacs M A, et al. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and congo red[J]. Applied Catalysis B: Environmental, 2017, 201: 159-168.
[7] Wei Z, Liang F, Liu Y, et al. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film[J]. Applied Catalysis B: Environmental, 2017, 201: 600-606.
[8] Ahmadi M, Motlagh H R, Jaafarzadeh N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63.
[9] Mustofa K, Aini N, Khalifah S N. Synthesis and characterization titanium dioxide (TiO2) doped vanadium(V) using solid state method[J]. First International Congress on Ichnology Ichnia, 2018, 4(1): 44-49.
[10] Jiang Z, Li J, Liao W, et al. Synthesis and characterization of the optical properties of Pt-TiO2 nanotubes[J]. Journal of Nanomaterials, 2017, 201(17): 2309-2315.
[11] Bai Y, Li K, Chen X, et al. Controllable synthesis of mixed-phase TiO2 with small anatase and rutile particle and its enhanced photocatalytic activity[J]. China Petroleum Processing & Petrochemical Technology, 2018, 20(1): 37-43.
[12] Fang W Q, Zhou J Z, Liu J, et al. Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by {001} facets[J]. Chemistry-A European Journal, 2011, 17(5): 1423-1427.
[13] Sun Z, Li C, Yao G, et al. In situ generated g-C3N4/TiO2 hybrid over diatomite supports for enhanced photodegradation of dye pollutants[J]. Materials & Design, 2016, 94: 403-409.
[14] Tay Q, Liu X, Tang Y, et al. Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostruc-tures[J]. Journal of Physical Chemistry C, 2013, 117(29): 14973-14982.
[15] Bai Y, Zhou Y, Zhang J, et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting[J]. ACS Catalysis, 2019, 9(4): 3242-3252.