摘要
人工智能技术的快速发展为智能客服问答系统带来了全新的变革。本文围绕人工智能在智能客服问答系统中的应用展开研究,重点探讨如何通过自然语言处理、深度学习和知识图谱等技术提升系统的理解能力与响应效率。融合多模态信息与上下文感知机制能够显著增强系统的智能化水平,从而提高用户体验与服务满意度。本研究旨在为构建高效、精准、个性化的智能客服系统提供理论支持与实践路径。
关键词: 人工智能;智能客服;自然语言处理;知识图谱;深度学习
Abstract
The rapid development of artificial intelligence (AI) technology has brought about new transformations for intelligent customer service question-answering systems. This paper focuses on the application of AI in intelligent customer service question-answering systems, with an emphasis on exploring how technologies such as natural language processing (NLP), deep learning, and knowledge graphs can enhance the system's understanding ability and response efficiency. The integration of multimodal information and context-aware mechanisms can significantly improve the intelligence level of the system, thereby enhancing user experience and service satisfaction. This study aims to provide theoretical support and practical approaches for constructing efficient, accurate, and personalized intelligent customer service systems.
Key words: Artificial intelligence; Intelligent customer service; Natural language processing; Knowledge graph; Deep learning
参考文献 References
[1] 陈龙.人工智能在中职电商实践教学中的运用[J].学周刊,2025,(17):28-30.
[2] 陈柳钦.人工智能推动消费升级的理论基础、内在机制与实践路径[J].改革与战略,2025,41(01):10-19.
[3] 张前锋.基于生成式人工智能的期刊智能客服系统设计[J].新媒体研究,2025,11(01):33-36+46.
[4] 陈茂强,黄建文,欧春雪.大数据技术在智能客服中的应用[J].通信企业管理,2024,(12):70-73.
[5] 马继康.人工智能时代A公司客服人员离职倾向及管理研究[D].安徽财经大学,2024.
[6] 刘汝萍,徐晨,吕明珠.基于顾客旅程视角的智能客服服务质量测量及其效应研究[J].管理学报,2024,21(11): 1660 -1668.
[7] 曾庆妮.基于人工智能的智能客服系统设计[J].信息记录材料,2024,25(11):173-176.
[8] 李纲,郭雅文.人工智能交互性刺激、顾客体验优势与顾客满意的关系研究[J/OL].华北水利水电大学学报(社会科学版),1-15[2025-06-23].