参考文献 References
[1] Jeffery C R. Crime prevention through environmental design[M]. CA:Sage, 1971.
[2] Cornish D B, Clarke R V. The reasoning criminal: rational choice perspectives on offending[M]. New York: Springer-Ver-lag, 1986.
[3] Cohen L E, Felson M. Social change and crime rate trends: A routine activity approach[J]. American Sociological Review, 1979, 44(4): 588-608.
[4] Brantingham P J, Brantingham P L. Patterns in crime[M]. New York: Macmillan, 1984.
[5] Brantingham P L, Brantingham P J. Environment, routine, and situation: toward a pattern theory of crime[J]. Routine Activity and Rational Choice, 1993, 5: 259-294.
[6] Farrell G, Pease K. Once bitten, twice bitten: Repeat victimisation and its implications for crime prevention[M]. London: Home Office Police Research Group, 1993.
[7] Townsley M. Infectious Burglaries. A test of the near repeat hypothesis[J]. British Journal of Criminology, 2003, 43(3): 615-633.
[8] Ellis L, Walsh A. Criminology: A global perspective[M]. Boston: Allyn and Bacon, 2000.
[9] Singh J P, Grann M, Fazel S. A comparative study of violence risk assessment tools: A systematic review and metaregression analysis of 68 studies involving 25,980 participants[J]. Clinical Psychology Review, 2011, 31(3): 499-513.
[10] Braga A A, Weisburd D L. The effects of focused deterrence strategies on crime: A systematic review and meta-analysis of the empirical evidence[J]. Journal of Research in Crime and Delinquency, 2012, 49(3): 323-358.
[11] Wand M P, Jones M C. Comparison of smoothing parameterizations in bivariate kernel density Estimation[J]. Journal of the American Statistical Association, 1993, 88(422): 520-528.
[12] Bowers K J, Johnson S D, Pease K. Prospective hot-spotting: the future of crime mapping? [J]. British Journal of Criminology, 2004, 44(5): 641-658.
[13] Chainey S, Tompson L, Uhlig S. The utility of hotspot mapping for predicting spatial patterns of crime[J]. Security Journal, 2008, 21(1): 4-28.
[14] Fielding M, Jones V. ‘Disrupting the optimal forager’: predictive risk mapping and domestic burglary reduction in Trafford, Greater Manchester[J]. International Journal of Police Science & Management, 2012, 14(1): 30-41.
[15] Caplan J M, Kennedy L W. Risk terrain modeling compendium[J]. Rutgers Center on Public Security, Newark, 2011: 51.
[16] Caplan J M, Kennedy L W, Piza E L, et al. Using vulnerability and exposure to improve robbery prediction and target area selection[J]. Applied Spatial Analysis and Policy, 2020, 13(1): 113-136.
[17] Mohler G O, Short M B, Brantingham P J, et al. Self-exciting point process modeling of crime[J]. Journal of the American Statal Association, 2011, 106(493): 100-108.
[18] Reinhart A, Greenhouse J. Self-exciting point processes with spatial covariates: modelling the dynamics of crime[J]. Journal of the Royal Statal Society, 2018, 67(5): 1305-1329.
[19] Mohler G O, Short M B, Brantingham P J. The concentration-dynamics tradeoff in crime hot spotting[A]. Unraveling the crime-place connection[M]. New York: Routledge, 2017: 19-39.
[20] Short M B, Mohler G O, Brantingham P J, et al. Gang rivalry dynamics via coupled point process networks[J]. Discrete and Continuous Dynamical Systems Series B, 2014, 19(5): 1459-1477.
[21] Johnson S D, Bowers K J. The burglary as clue to the future: The beginnings of prospective hot-spotting[J]. European Journal of Criminology. 2004, 1(2): 237-255.
[22] 吴玲. 入室盗窃近重复现象研究及其警务应用[J]. 湖北警官学院学报, 2014, 27(8): 154-157.
[23] Farrell G, Phillips C, Pease K. Like taking candy-why does repeat victimization occur[J]. Brit. J. Criminology, 1995, 35: 384.
[24] Brantingham P J, Brantingham P L. The geometry of crime and crime pattern theory[M]//Environmental criminology and crime analysis. Routledge, 2016: 117-135.
[25] Wortley R K, Mazerolle L A. Environmental Criminology and Crime Analysis[M]. Devon: Willan Publishers, 2008.
[26] McKay, D Henry. Juvenile delinquency and urban areas: a study of rates of delinquents in relation to differential characteristics of local communities in American cities [M]. Chicago: University of Chicago Press, 1942.
[27] Hough M, Tilley N. Getting the grease to the squeak: Research lessons for crime prevention[M]. London: Home Office, 1998.
[28] Vigne N, Wartell J. Crime mapping case studies: Successes in the field[M]. Washington: Police Executive Research Forum, 1998.
[29] Harries K D. Mapping crime: Principle and practice[M]. Washington: US Department of Justice, Office of Justice Programs, National Institute of Justice, 1995.
[30] Goldsmith V, McGuire P G, Mollenkopf J B, et al. Analyzing crime patterns: Frontiers of practice[M]. London: Sage Publications, 1999.
[31] Chainey S, Ratcliffe J. GIS and crime mapping[M]. New Jersey: John Wiley & Sons Inc, 2005.
[32] Johnson S D, Bernasco W, Bowers K J, et al. Space-time patterns of risk: A cross national assessment of residential burglary victimization[J]. Journal of Quantitative Criminology, 2007, 23(3): 201-219.
[33] Johnson S D. Repeat burglary victimisation: A tale of two theories[J]. Journal of Experimental Criminology, 2008, 4(3): 215-240.
[34] Takahashi K, Kulldorff M, Tango T, et al. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring[J]. International Journal of Health Geographics, 2008, 7(14): 14-14.
[35] Short M B, Bertozzi A L, Brantingham P J. Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression[J]. SIAM Journal on Applied Dynamical Systems, 2010, 9(2): 462-483.
[36] Short M B, Brantingham P J, Bertozzi A L, et al. Dissipation and displacement of hotspots in reaction-diffusion models of crime[J]. Proceedings of the National Academy of Sciences, 2010, 107(9): 3961-3965.
[37] Short M B, D'orsogna M R, Pasour V B, et al. A statistical model of criminal behavior[J]. Mathematical Models and Methods in Applied Sciences, 2008, 18(1): 1249-1267.
[38] Cover T M, Hart P E. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[39] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2): 131-163.
[40] Vapnik V N, Chervoneva A Y. On class of perceptrons[J]. Automation and Remote Control, 1964, 25(1): 821-837.
[41] Hunt E B, Marin J, Stone P J. Experiments in induction[M]. New York: Wiley, 1966.
[42] Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[43] Franklin J. The elements of statistical learning: data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2): 83-85.
[44] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[45] 魏智远. 刑事犯罪回归分析与数量预测[J]. 公安大学学报, 1993(1): 47–51.
[46] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175.
[47] Gorr W, Olligschlaeger A, Thompson Y. Short-term forecasting of crime[J]. International Journal of Forecasting, 2003, 19(4): 579–594.
[48] 屈茂辉, 郝士铭. 基于ARMA模型的我国财产类犯罪人数预测研究[J]. 中国刑事法杂志, 2013(4): 100–106.
[49] Chen P, Yuan H, Shu X. Forecasting crime using the arima model[A]. 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery[C]. Piscataway: IEEE, 2008, 5: 627-630.
[50] 侯苗苗, 胡啸峰. 基于时间序列模型SARIMA的犯罪预测研究[J]. 中国人民公安大学学报(自然科学版), 2021, 27(2): 67–73.
[51] Feng M, Zheng J, Ren J, et al. Big data analytics and mining for effective visualization and trends forecasting of crime data[J]. IEEE Access, 2019, 7(99): 106111-106123.
[52] 颜靖华,侯苗苗. 基于LSTM网络的盗窃犯罪时间序列预测研究[J]. 数据分析与知识发现, 2020, 4(11): 84-91.
[53] Butt UM, Letchmunan S, Hassan FH, Koh TW. Leveraging transfer learning with deep learning for crime prediction [J]. PLoS ONE, 2024, 19 (4): e0296486.
[54] Ivanyuk V. Forecasting of digital financial crimes in Russia based on machine learning methods[J]. Journal of Computer Virology and Hacking Techniques, 2024, 20: 349–362.
[55] Bappee FK, Soares A, Petry LM, Matwin S. Examining the impact of cross-domain learning on crime prediction[J]. Journal of Big Data, 2021, 8 (1): 1 - 27.
[56] 黄娜, 何泾沙, 孙靖超, 等. 基于改进LSTM网络的犯罪态势预测方法[J]. 北京工业大学学报, 2019, 45(8): 742-748.
[57] Gao Y, Yin D, Zhao X, et al. Prediction of Telecommunication Network Fraud Crime Based on Regression‐LSTM Model[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 3151563.
[58] Biswas A A, Basak S. Forecasting the trends and patterns of crime in bangladesh using machine learning model[A]. 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT)[C]. Piscataway: IEEE, 2019: 114-118.
[59] 于红志, 刘凤鑫, 邹开其. 改进的模糊BP神经网络及在犯罪预测中的应用[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(02): 244-247.
[60] Gallison J K, Andresen M A. Crime and public transportation: a case study of Ottawa’s O-Train system[J]. Canadian Journal of Criminology and Criminal Justice, 2017, 59(1): 94-122.
[61] Kianmehr K, Alhajj R. Crime hot-spots prediction using support vector machine[A]. IEEE International Conference on Computer Systems and Applications[C]. Los Alamitos: IEEE Computer Society, 2006: 952-959.
[62] Kianmehr K, Alhajj R. Effectiveness of support vector machine for crime hot-spots prediction[J]. Applied Artificial Intelligence, 2008, 22(5): 433-458.
[63] Guevara C, Santos M. Crime prediction for patrol routes generation using machine learning[A]. Computational Intelligence in Security for Information Systems Conference[C]. Cham: Springer, 2019: 97-107.
[64] 石汝楠, 王聪. 基于改进K-means算法的犯罪预测模型[J]. 警学研究, 2021(02): 51-60.
[65] Kouziokas G N. The application of artificial intelligence in public administration for forecasting high crime risk transportation areas in urban environment[J]. Transportation Research Procedia, 2017, 24: 467-473.
[66] Sathyadevan S, Devan M S, Gangadharan S S. Crime analysis and prediction using data mining[A]. 2014 First International Conference on Networks & Soft Computing (ICNSC2014)[C]. Piscataway: IEEE, 2014: 406-412.
[67] Emmanuel A, Elisha O O, Danison T, et al. Crime prediction using decision tree (J48) classification algorithm[J]. International Journal of Computer and Information Technology, 2017, 6(3): 188-195.
[68] Bogomolov A, Lepri B, Staiano J, et al. Once upon a crime: towards crime prediction from demographics and mobile data[C]. Proceedings of the 16th international conference on multimodal interaction, 2014: 427-434.
[69] Huang Y Y, Li C T, Jeng S K. Mining location-based social networks for criminal activity prediction[A]. 2015 24th Wireless and Optical Communication Conference (WOCC)[C]. Piscataway: IEEE, 2015: 185-189.
[70] Kadar C, Maculan R, Feuerriegel S. Public decision support for low population density areas: An imbalance-aware hyper-ensemble for spatio-temporal crime prediction[J]. Decision Support Systems, 2019, 119: 107-117.
[71] Zhang Q, Yuan P, Zhou Q, et al. Mixed spatial-temporal characteristics based crime hot spots prediction[A]. 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD)[C]. Piscataway: IEEE, 2016: 97-101.
[72] Lin Y L, Yen M F, Yu L C. Grid-based crime prediction using geographical features[J]. ISPRS International Journal of Geo-Information, 2018, 7(8): 298-314.
[73] 沈寒蕾, 张虎, 张耀峰, 等. 基于长短期记忆模型的入室盗窃犯罪预测研究[J]. 统计与信息论坛, 2019, 34(11): 107-115.
[74] Rummens A, Hardyns W, Pauwels L. The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context[J]. Applied Geography, 2017, 86: 255-261.
[75] Zhuang Y, Almeida M, Morabito M, et al. Crime hot spot forecasting: A recurrent model with spatial and temporal information[A]. 2017 IEEE International Conference on Big Knowledge (ICBK)[C]. Piscataway: IEEE, 2017: 143-150.
[76] Yu C H, Ding W, Chen P, et al. Crime forecasting using spatio-temporal pattern with ensemble learning[A]. Pacific-Asia Conference on Knowledge Discovery and Data Mining[C]. Cham: Springer, 2014: 174-185.
[77] Zhang X, Liu L, Xiao L, et al. Comparison of machine learning algorithms for predicting crime hotspots[J]. IEEE Access, 2020, 8: 181302-181310.
[78] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
[79] Qian Y, Pan L, Wu P, et al. GeST: A grid embedding based spatio-temporal correlation model for crime prediction[A]. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)[C]. Piscataway: IEEE, 2020: 1-7.
[80] 肖延辉, 王欣, 冯文刚, 等. 基于长短记忆型卷积神经网络的犯罪地理位置预测方法[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[81] Rumi S K, Deng K, Salim F D. Crime event prediction with dynamic features[J]. EPJ Data Science, 2018, 7(1): 43-70.
[82] Huang C, Zhang J, Zheng Y, et al. DeepCrime: Attentive hierarchical recurrent networks for crime prediction[A]. Proceedings of the 27th ACM International Conference on Information and Knowledge Management[C]. New York: ACM, 2018: 1423-1432.
[83] Wang Y, Ge L, Li S, et al. Deep temporal multi-graph convolutional network for crime prediction[A]. International Conference on Conceptual Modeling[C]. Cham: Springer, 2020: 525-538.
[84] Mao Y, Yin L, Zeng M, et al. Review of Empirical Studies on Relationship between Street Environment and Crime[J]. Journal of Planning Literature, 2021, 36(2): 187-202.
[85] Lu Y, Chen X. On the false alarm of planar K-function when analyzing urban crime distributed along streets[J]. Social science research, 2007, 36(2): 611-632.
[86] Rosser G, Davies T, Bowers K J, et al. Predictive crime mapping: arbitrary grids or street networks?[J]. Journal of Quantitative Criminology, 2017, 33(3): 569-594.
[87] Zhang Y, Cheng T. Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events[J]. Computers Environment and Urban Systems, 2019, 79.
[88] Baculo M J C, Marzan C S, de Dios Bulos R, et al. Geospatial-temporal analysis and classification of criminal data in manila[A]. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)[C]. Piscataway: IEEE, 2017: 6-11.
[89] Alparslan Y, Panagiotou I, Livengood W, et al. Perfecting the Crime Machine[J]. arXiv preprint arXiv:2001.09764, 2020.
[90] Wu S, Wang C, Cao H, et al. Crime prediction using data mining and machine learning[A]. International Conference on Computer Engineering and Networks[C]. Cham: Springer, 2018: 360-375.
[91] Almanie T, Mirza R, Lor E. Crime prediction based on crime types and using spatial and temporal criminal hotspots[J]. Computer Science, 2015, 5(4): 1-19.
[92] Iqbal R, Murad M A A, Mustapha A, et al. An experimental study of classification algorithms for crime prediction[J]. Indian Journal of Science and Technology, 2013, 6(3): 4219-4225.
[93] Rui Y, Olafsson S. Classification for predicting offender affiliation with murder victims[J]. Expert Systems with Applications, 2011, 38(11): 13518-13526.
[94] Nguyen T T, Hatua A, Sung A H. Building a learning machine classifier with inadequate data for crime prediction[J]. Journal of Advances in Information Technology Vol, 2017, 8(2): 3-9.
[95] Vural M S, Gök M. Criminal prediction using Naive Bayes theory[J]. Neural Computing and Applications, 2017, 28(9): 2581-2592.
[96] Mohan A, Dhir R, Hirashkar H, et al. Matching witness' account with mugshots for forensic applications[A]. 2018 Eleventh International Conference on Contemporary Computing (IC3)[C]. Piscataway: IEEE, 2018: 1-5.
[97] Burgess E W. Factors determining success or failure on parole[J]. The workings of the indeterminate sentence law and the parole system in Illinois, 1928: 221-234.
[98] Caulkins J, Cohen J, Gorr W, et al. Predicting criminal recidivism: A comparison of neural network models with statistical methods[J]. Journal of Criminal Justice, 1996, 24(3): 227-240.
[99] Schmidt P, Witte A D. Predicting Recidivism Using Survival Models[J]. Contemporary Sociology, 1989, 18(2): 245.
[100] Schmidt P, Witte A D. Predicting criminal recidivism using ‘split population’ survival time models[J]. Journal of Econometrics, 1989, 40(1): 141-159.
[101] Brodzinski J D, Crable E A, Scherer R F. Using artificial intelligence to model juvenile recidivism patterns[J]. Computers in Human Services, 1994, 10(4): 1-18.
[102] Palocsay S W, Wang P, Brookshire R G. Predicting criminal recidivism using neural networks[J]. Socio-Economic Planning Sciences, 2000, 34(4): 271-284.
[103] Wang P, Mathieu R, Ke J, et al. Predicting criminal recidivism with support vector machine[A]. 2010 International Conference on Management and Service Science[C]. Piscataway: IEEE, 2010: 1-9.
[104] Tollenaar N, Van der Heijden P G M. Which method predicts recidivism best?: a comparison of statistical, machine learning and data mining predictive models[J]. Journal of the Royal Statistical Society, 2013, 176(2): 565-584.
[105] Rossmo D K. Geographic profiling: Target patterns of serial murderers[D]. Theses (School of Criminology)/Simon Fraser University, 1995.
[106] Snook B, Taylor P J, Bennell C. Shortcuts to Geographic Profiling Suces: A Reply to Rosmo (2005)[J].Applied Cognitive Psychology, 2005, 19(5): 655-661.
[107] Levine N, CrimeStat I. A spatial statistics program for the analysis of crime incident locations[J]. National Institute of Justice, 2000, 25(2): 162-168.
[108] Shiode S, Shiode N, Block R, et al. Space-time characteristics of micro-scale crime occurrences: an application of a network-based space-time search window technique for crime incidents in Chicago[J]. International Journal of Geographical Information Science, 2015, 29(5-6): 697-719.
[109] Song C, Koren T, Wang P, et al. Modelling the scaling properties of human mobility[J]. Nature physics, 2010, 6(10): 818-823.
[110] 方嘉良, 李卫红. 犯罪嫌疑人落脚点预测模型改进研究——基于地理环境因素与CGT模型组合方法[C]. //2016中国地理信息科学理论与方法学术年会论文集. 2016: 1-8.
[111] 李卫红, 戴侃, 闻磊. 顾及地理因素的犯罪地理目标模型改进方法[J]. 测绘科学, 2015, 40(7): 86-91.
[112] Duan L, Ye X, Hu T, et al. Prediction of suspect location based on spatiotemporal semantics[J]. ISPRS International Journal of Geo-Information, 2017, 6(7): 185.
[113] 姜丁菊, 刘学文, 姜晓雪. 基于聚类的恐袭事件嫌疑人与可疑据点预测[J]. 重庆工商大学学报:自然科学版, 2019, 36(3): 6.
[114] Butt U M, Letchmunan S, Hassan F H, et al. Spatio-temporal crime hotspot detection and prediction: A systematic literature review[J]. IEEE Access, 2020, 8: 166553-166574.
[115] Liu H, Zhu X. Joint modeling of multiple crimes: A bayesian spatial approach[J]. ISPRS International Journal of Geo-Information, 2017, 6(1): 16-32.
[116] 柳林, 纪佳楷, 宋广文, 等. 基于犯罪空间分异和建成环境的公共场所侵财犯罪热点预测[J]. 地球信息科学学报, 2019, 21(11): 1655-1668.
[117] Wheeler A P, Steenbeek W. Mapping the risk terrain for crime using machine learning[J]. Journal of Quantitative Criminology, 2021, 37(2): 445-480.
[118] Alves L G A, Ribeiro H V, Rodrigues F A. Crime prediction through urban metrics and statistical learning[J]. Physica A: Statistical Mechanics and its Applications, 2018, 505: 435-443.
[119] Campedelli G M. Explainable machine learning for predicting homicide clearance in the United States[J]. Journal of criminal justice, 2022, 79: 101898.
[120] Sudjianto A, Nair S, Yuan M, et al. Statistical methods for fighting financial crimes[J]. Technometrics, 2010, 52(1): 5-19.
[121] Pickett K H S, Pickett J M. Financial crime investigation and control[M]. Hoboken: John Wiley & Sons, 2002.
[122] Mena J. Investigative data mining for security and criminal detection[M]. Butterworth-Heinemann, 2003.
[123] Serrano A, Costa J, Cardonha C, et al. Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department[A]. The Seventh International Conference on Forensic Computer Science[C]. 2012.
[124] Kiran S, Guru J, Kumar R, et al. Credit card fraud detection using Naïve Bayes model based and KNN classifier[J]. International Journal of Advance Research, Ideas and Innovations in Technoloy, 2018, 4(3): 44-47.
[125] Sudha C, Raj T N. Credit card fraud detection in internet using k-nearest neighbor algorithm[J]. Int. J. Comput. Sci, 2017, 5: 22-30.
[126] Abdelhamid D, Khaoula S, Atika O. Automatic bank fraud detection using support vector machines[A]. The International Conference on Computing Technology and Information Management (ICCTIM)[C]. Society of Digital Information and Wireless Communication, 2014: 10.
[127] Gaikwad J R, Deshmane A B, Somavanshi H V, et al. Credit card fraud detection using decision tree induction algorithm[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2014, 4(6): 66-69.
[128] Sohony I, Pratap R, Nambiar U. Ensemble learning for credit card fraud detection[A]. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data[C]. 2018: 289-294.
[129] Lim K S, Lee L H, Sim Y W. A review of machine learning algorithms for fraud detection in credit card transaction[J]. International Journal of Computer Science & Network Security, 2021, 21(9): 31-40.
[130] Arief H A, Saptawati G A P, Asnar Y D W. Fraud detection based-on data mining on Indonesian E-Procurement System (SPSE)[A]. 2016 International Conference on Data and Software Engineering (ICoDSE)[C]. IEEE, 2016: 1-6.
[131] Rabuzin K, Modrusan N. Prediction of Public Procurement Corruption Indices using Machine Learning Methods[A]. KMIS[C]. 2019: 333-340.
[132] Modrusan N, Rabuzin K, Mrsic L. Improving Public Sector Efficiency using Advanced Text Mining in the Procurement Process[A]. DATA[C]. 2020: 200-206.
[133] Rabuzin K, Modrušan N, Križanić S, et al. Process Mining in Public Procurement in Croatia[A]. Industrial Innovation in Digital Age[C]. Springer, Cham, 2022: 473-480.
[134] Decarolis F, Giorgiantonio C. Corruption red flags in public procurement: new evidence from Italian calls for tenders[J]. EPJ Data Science, 2022, 11(1): 16.
[135] Jayasree V, Balan R V S. Money laundering regulatory risk evaluation using bitmap index-based decision tree[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 23: 96-102.
[136] 张成虎, 赵小虎. 基于决策树算法的洗钱交易识别研究[J]. 武汉理工大学学报, 2008, 30(2): 154-156.
[137] 王超. 金融犯罪之人工智能预防路径研究——以贷款诈骗风险智能建模预测为分析路径[J]. 河南警察学院学报, 2019, 28(2): 27-33.
[138] Brar H S, Kumar G. Cybercrimes: A proposed taxonomy and challenges[J]. Journal of Computer Networks and Communications, 2018, 2018.
[139] Ch R, Gadekallu T R, Abidi M H, et al. Computational system to classify cyber crime offenses using machine learning[J]. Sustainability, 2020, 12(10): 4087.
[140] Abbass Z, Ali Z, Ali M, et al. A framework to predict social crime through twitter tweets by using machine learning[A]. 2020 IEEE 14th International Conference on Semantic Computing (ICSC)[C]. IEEE, 2020: 363-368.
[141] Deylami H M, Singh Y P. Adaboost and SVM based cybercrime detection and prevention model[J]. Artificial Intelligence Research, 2012, 1(2): 117-130.
[142] Bilen A, Özer A B. Cyber-attack method and perpetrator prediction using machine learning algorithms[J]. PeerJ Computer Science, 2021, 7: e475.
[143] Zhou S, Wang X, Yang Z. Monitoring and early warning of new cyber-telecom crime platform based on BERT migration learning[J]. China Communications, 2020, 17(3): 140-148.
[144] Kanoga S, Kawai N, Takaoka K. Deep neural networks for grid-based elusive crime prediction using a private dataset obtained from Japanese municipalities[A]. International Conference on Applied Human Factors and Ergonomics[C]. Cham: Springer, 2020: 105-112.
[145] Jin G, Wang Q, Zhao X, et al. Crime-GAN: A context-based sequence generative network for crime forecasting with adversarial loss[A]. 2019 IEEE International Conference on Big Data (Big Data)[C]. IEEE, 2019: 1460-1469.
[146] Li Z, Huang C, Xia L, et al. Spatial-temporal hypergraph self-supervised learning for crime prediction[A]. 2022 IEEE 38th international conference on data engineering (ICDE)[C]. IEEE, 2022: 2984-2996.
[147] Wang C, Lin Z, Yang X, et al. Hagen: Homophily-aware graph convolutional recurrent network for crime forecasting[A]. Proceedings of the AAAI Conference on Artificial Intelligence[C]. 2022, 36(4): 4193-4200.