期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Scientific Development Research . 2025; 5: (4) ; 60-66 ; DOI: 10.12208/j.sdr.20250149.

Study on thermal management of battery packs using phase change materials under cyclic charge–discharge conditions
循环充放电下锂电池组相变材料热管理研究

作者: 何润楠, 易升林, 周于帅, 朱承志 *

重庆科技大学安全科学与工程学院 重庆

*通讯作者: 朱承志,单位:重庆科技大学安全科学与工程学院 重庆;

发布时间: 2025-08-19 总浏览量: 81

摘要

本文通过CC-CV充电曲线与电池发热UDF算法建立4S4P电池模组(14.4 V/19.6 Ah)的数值模型,系统研究了不同横向间距下锂电池组循环充放电下相变材料(PCM)的相变演化规律与热响应特性。研究结果表明,增大间距可显著降低峰值温度,并推迟PCM液化起始时间。同时,二次放电过程中电池温升速率随间距减小而显著上升,最大增幅达34 %,较大间距可有效抑制第二轮循环的峰值温度,并缩短超温运行时间。

关键词: 锂电池;充放电研究;相变材料;热管理

Abstract

This study numerically investigates the phase change evolution and thermal response characteristics of phase change materials (PCM) in a lithium-ion battery pack under cyclic charge and discharge conditions, specifically focusing on a 4S4P battery module (14.4 V/19.6 Ah) with varying lateral spacings. This was achieved by establishing a numerical model utilizing CC-CV charging curves and a battery thermal UDF algorithm. The research findings indicate that increasing the spacing significantly reduces the peak temperature and postpones the initiation of PCM liquefaction. Concurrently, the battery temperature rise rate during the second discharge process markedly increases with decreasing spacing, with a maximum increment of 34%. Larger spacings effectively suppress the peak temperature in the second cycle and shorten the duration of operation above optimal temperatures.

Key words: Lithium-ion battery; Charge–discharge; PCM; Thermal management

参考文献 References

[1] Patel J R, Rathod M K. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries [J]. Journal of power sources, 2020, 480: 228820.

[2] Wang Q, Jiang B, Li B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles [J]. Renewable and sustainable energy reviews, 2016, 64: 106-128.

[3] Chen K, Wu W, Yuan F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern [J]. Energy, 2019, 167: 781-790.

[4] Kumar S D, Aneesh P. A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles [J]. Journal of Energy Storage, 2021, 41.

[5] Yize Z, Xuelai Z, Bo Y, et al. A review of battery thermal management systems using liquid cooling and PCM [J]. Journal of Energy Storage, 2024, 76.

[6] Wang Y, Wang Y, He T, et al. A numerical study on a hybrid battery thermal management system based on PCM and wavy microchannel liquid cooling [J]. Renewable Energy, 2024, 235: 121273-121273.

[7] Mengliang Y, Yunhua G, Jialin L, et al. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning [J]. Applied Thermal Engineering, 2021, 191.

[8] Peng P, Yiwei W, Fangming J. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management [J]. Applied Thermal Engineering, 2022, 209.

[9] Yang C, Xu X R, Bake M, et al. Numerical investigation and optimization of the melting performance of latent heat thermal energy storage unit strengthened by graded metal foam and mechanical rotation [J]. Renewable Energy, 2024, 227: 120537-.

[10] 陈国文. 基于相变冷却的锂离子电池充放电热管理研究[D]. 长安大学,2024.

[11] Hosseini M J, Ranjbar A A, Sedighi K, et al. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger [J]. International Communications in Heat and Mass Transfer, 2012, 39(9): 1416-1424.

引用本文

何润楠, 易升林, 周于帅, 朱承志, 循环充放电下锂电池组相变材料热管理研究[J]. 科学发展研究, 2025; 5: (4) : 60-66.