摘要
针对分布式储能系统在电网中的广泛应用,提出了一种基于联邦学习的SOC一致性控制方法。通过联邦学习框架,各分布式储能单元可以在不共享数据的前提下,实现高效的状态监测与协同控制。该方法通过联合训练多个储能单元的电池状态,实现SOC一致性的精确控制,降低了由于单个储能单元电量不均衡带来的系统损耗与性能下降。本文通过对比实验验证了该方法在电池管理系统中的有效性和鲁棒性,具有较强的可扩展性和适应性,适合未来智能电网中对分布式储能系统的控制需求。
关键词: 分布式储能;联邦学习;SOC一致性;电池管理;智能电网
Abstract
Aiming at the wide application of distributed energy storage systems in power grids, this paper proposes a SOC consistency control method based on federated learning. Through the federated learning framework, each distributed energy storage unit can achieve efficient state monitoring and collaborative control without sharing data. This method realizes precise control of SOC consistency by jointly training the battery states of multiple energy storage units, reducing system losses and performance degradation caused by unbalanced power levels of individual energy storage units. Comparative experiments in this paper verify the effectiveness and robustness of the proposed method in battery management systems. It has strong scalability and adaptability, and is suitable for the control requirements of distributed energy storage systems in future smart grids.
Key words: Distributed energy storage; Federated learning; SOC consistency; Battery management; Smart grid
参考文献 References
[1] 张新,肖柳君,许继平,等.基于分布式联邦学习的农产品供应链跨域风险信息检测研究[J].农业机械学报,2025, 56(06):56-66+89.
[2] 黄梅,王玲玲,张政胤,等.面向异构数据的半分布式联邦学习安全聚合[J].网络与信息安全学报,2025,11(03): 175-189.
[3] 张洪广,杨翕然.基于联邦自适应元优化的分布式协同学习方法[J].指挥信息系统与技术,2025,16(02):1-8.
[4] 安芸帙,崔明建,韩一宁,等.考虑数据隐私保护自适应联邦学习的分布式光伏有功可调节能力评估方法[J/OL].中国电机工程学报,1-14[2025-07-11].[5]王宁,陈伟.基于联邦学习的分布式网络诈骗检测系统[J/OL].重庆工商大学学报(自然科学版),1-9[2025-07-11].
[5] 邹徐熹,周忠冉,王虹岚,等.基于联邦学习的分布式物联网设备识别方法[J].计算机工程与应用,2024,60(23): 155-167.
[6] 蔡宇轩.分布式场景下高效隐私保护联邦学习技术研究[D].西安电子科技大学,2024.
[7] 臧洪睿,杨婷婷,刘洪波,等.面向物联网的分布式联邦学习加密验证研究[J].计算机科学,2024,51(S1):1062-1066.