期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Scientific Development Research . 2025; 5: (4) ; 127-129 ; DOI: 10.12208/j.sdr.20250169.

Research on optimization of urban emergency management decision-making supported by big data
大数据支持下的城市应急管理决策优化研究

作者: 聂金龙 *

数字郑州科技有限公司 河南郑州

*通讯作者: 聂金龙,单位:数字郑州科技有限公司 河南郑州;

发布时间: 2025-08-20 总浏览量: 103

摘要

大数据技术的快速发展为城市应急管理提供了新的决策支持手段。城市应急管理在面对突发事件时,决策的及时性和科学性至关重要,然而传统的决策模式往往存在信息不对称、数据处理效率低等问题。本研究探讨了大数据如何优化城市应急管理决策,提出利用大数据技术对城市应急管理中的各类信息进行实时采集、分析和处理,提升决策的准确性和响应速度。通过对数据源的多元化整合与分析模型的构建,能够更加全面地评估和预测突发事件的影响,从而为应急决策提供更具参考价值的依据。本研究进一步讨论了大数据技术在应急管理中的具体应用及面临的挑战,并提出相关的优化方案,以推动城市应急管理决策的智能化与高效化。

关键词: 大数据;城市应急管理;决策优化;实时分析;智能化

Abstract

The rapid development of big data technology has provided new decision-support tools for urban emergency management. In urban emergency management, the timeliness and scientificity of decision-making are crucial when responding to sudden incidents. However, traditional decision-making models often suffer from problems such as information asymmetry and low efficiency in data processing. This study explores how big data can optimize urban emergency management decision-making, proposing the use of big data technology to conduct real-time collection, analysis, and processing of various types of information in urban emergency management, thereby improving the accuracy and response speed of decisions. Through the diversified integration of data sources and the construction of analytical models, it is possible to more comprehensively evaluate and predict the impact of sudden incidents, thus providing more valuable reference basis for emergency decision-making. This study further discusses the specific applications of big data technology in emergency management, the challenges faced, and puts forward relevant optimization solutions to promote the intelligence and efficiency of urban emergency management decision-making.

Key words: Big data; Urban emergency management; Decision optimization; Real-time analysis; Intelligence

参考文献 References

[1] 游晓烨,明东权,程朋根.多源数据支持下城市建成区提取与对比分析[J/OL].测绘地理信息,2025,(04):106-112 [2025-07-12].

[2] 丁力.CIM支持下基于城建档案大数据的城市建设辅助决策应用[J].住宅产业,2025,(01):67-70.

[3] 詹傢杰.多源数据支持下城市滨水区空间品质测度及影响因素研究[J].上海工程技术大学学报,2024,38(03): 304 -312+327.

[4] 孙洋洋.多源数据支持下的城市滨水空间活力提升研究[J].城市建筑,2023,20(09):43-49.

[5] 罗斌.智能驾驶数据支持下的城市道路场景视觉重建及立体车道线提取[D].中南大学,2023.

[6] 刘家宇.POI数据支持下的北京市城市功能区识别与复合分析[D].中国地质大学(北京),2023.

[7] 姚宇超.多源数据支持下合肥市区城市活力测度与影响因素研究[D].合肥工业大学,2023.

[8] 程朋根,吴雷云,张培林.多源数据支持下的南昌市城市发展与生态耦合关系分析[J].测绘地理信息,2023,48(02): 107-112.

引用本文

聂金龙, 大数据支持下的城市应急管理决策优化研究[J]. 科学发展研究, 2025; 5: (4) : 127-129.