Open Access Article
Scientific Development Research . 2025; 5: (6) ; 39-43 ; DOI: 10.12208/j.sdr.20250233.
Study on microbial mineralization reinforcement of aeolian sand-carbide slag system
电石渣-风积沙体系微生物矿化加固特性研究
作者:
冀芳灿1,
陈辉1,2 *,
张军辉1,2 *,
宋德垚3
1 新疆大学地质与矿业工程学院 新疆乌鲁木齐市
2 新疆矿产资源绿色开发与生态修复协同创新中心 新疆乌鲁木齐市
3 玛纳斯县天欣煤业有限公司 新疆昌吉
*通讯作者:
陈辉,单位: 新疆大学地质与矿业工程学院 新疆乌鲁木齐市 新疆矿产资源绿色开发与生态修复协同创新中心 新疆乌鲁木齐市;张军辉,单位: 新疆大学地质与矿业工程学院 新疆乌鲁木齐市 新疆矿产资源绿色开发与生态修复协同创新中心 新疆乌鲁木齐市;
发布时间: 2025-10-20 总浏览量: 114
PDF 全文下载
引用本文
摘要
为解决电石渣和风积沙两种固体废弃物的资源化利用问题,本研究将电石渣作为辅助钙源材料引入微生物诱导碳酸钙沉淀(Microbially Induced Carbonate Precipitation, MICP)技术,探究其对风积沙加固效果的影响规律。采用单因素变量法,设置5%、10%、15%、20%四个电石渣掺量梯度,通过无侧限抗压强度试验系统评估不同掺量条件下试件的力学性能。试验结果显示,当电石渣掺量从0%增至15%时,试件强度由0.37 MPa提升至0.65 MPa,增幅达75.7%;但当掺量增至20%时,强度下降至0.46 MPa。研究表明,15%为最优掺量,此时电石渣的高钙含量和适度碱性环境协同作用,使碳酸钙沉淀效率达到峰值;过量掺入则因强碱性环境抑制微生物活性而导致强度下降。本研究为固体废弃物资源化利用和MICP技术的工程应用提供了理论依据和技术参考。
关键词: 微生物诱导碳酸钙沉淀(MICP);电石渣;风积沙;固体废弃物资源化;无侧限抗压强度
Abstract
To address the resourceization of two types of solid wastes, carbide slag and aeolian sand, this study introduces carbide slag as a supplementary calcium source material into Microbially Induced Carbonate Precipitation (MICP) technology and investigates its influence on the reinforcement effectiveness of aeolian sand. Using a single-factor variable method, four carbide slag content gradients of 5%, 10%, 15%, and 20% were established, and the mechanical properties of specimens under different content conditions were systematically evaluated through unconfined compressive strength tests. The experimental results show that when the carbide slag content increases from 0% to 15%, the specimen strength rises from 0.37 MPa to 0.65 MPa, representing an increase of 75.7%; however, when the content increases to 20%, the strength decreases to 0.46 MPa. The study demonstrates that 15% is the optimal content, at which the high calcium content and moderate alkaline environment of carbide slag synergistically contribute to peak carbonate precipitation efficiency; excessive addition leads to strength reduction due to the inhibition of microbial activity by the strongly alkaline environment. This research provides theoretical foundation and technical reference for solid waste resourceization and engineering applications of MICP technology.
Key words: Microbially induced carbonate precipitation (MICP); Carbide slag; Aeolian sand; Solid waste resource utilization; Unconfined compressive strength
参考文献 References
[1] 常睿卿, 杨俊杰, 武亚磊, 等. Cgf固化/稳定化复合重金属污染土强度及浸出特性[J]. 中国环境科学, 2024.
[2] 张杨, 李远勋. 分析电石渣的综合利用[J]. 中国金属通报, 2022(8): 237-239.
[3] 马涛, 段树涛, 曹智慧, 等. 电石生产过程降低碳排放的措施研究[J]. 中国氯碱, 2022(12): 49-53.
[4] 阳小东, 李进. 电石渣的综合利用[J]. 聚氯乙烯, 2017, 45(9): 1-4.
[5] 高智. 水泥工业“十二五”发展思路[J]. 21世纪建筑材料, 2010, 2(4): 1-5.
[6] Zhang J, Gong X, Wang Z, et al. Inducible regulation of spherical CaO particle for the recycling of carbide slag[J]. Powder Technology, 2020, 362: 671-679.
[7] 梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007(5): 222-234.
[8] 王会昌, 贾晓伟, 沈小宁, 等. 电石渣的综合利用[J]. 聚氯乙烯, 2021, 49(11): 37-42.
[9] Wong L S. Microbial cementation of ureolytic bacteria from the genus bacillus: A review of the bacterial application on cement-based materials for cleaner production[J]. Journal of Cleaner Production, 2015, 93: 5-17.
[10] Martin D, Dodds K, Ngwenya B T, et al. Inhibition of sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis[J]. Environmental Science & Technology, 2012, 46(15): 8351-8355.
引用本文
冀芳灿, 陈辉, 张军辉, 宋德垚, 电石渣-风积沙体系微生物矿化加固特性研究[J]. 科学发展研究, 2025; 5: (6) : 39-43.