摘要
气动软体机械臂以柔顺性和安全性为突出优势,在人机交互及复杂环境操作中展现出广阔应用潜力。本文围绕仿生结构设计与位置控制展开研究,从自然界软体肢体汲取灵感,建立符合生物学特征的气动驱动结构模型,实现机械臂在多自由度运动中的柔性伸展与抓取。针对气动驱动非线性与时滞问题,提出结合力学建模与反馈控制的策略,以提升位姿精度与动态响应性能。研究结果为软体机器人在医疗、服务及危险环境操作等领域的推广应用提供理论依据与技术支持。
关键词: 气动软体机械臂;仿生结构;位置控制;非线性建模
Abstract
Pneumatic soft robotic arms, distinguished by their flexibility and safety, demonstrate broad application potential in human-machine interaction and complex environment operations. This study focuses on bionic structure design and position control, drawing inspiration from natural biological limbs to establish a biomechanically compliant pneumatic drive structure model. The developed mechanism enables flexible extension and grasping during multi-degree-of-freedom movements. To address nonlinear dynamics and time delays in pneumatic drive systems, a strategy integrating mechanical modeling with feedback control is proposed to enhance pose accuracy and dynamic response performance. The research findings provide theoretical foundations and technical support for the application of soft robotics in medical services, service industries, and hazardous environment operations.
Key words: Pneumatic soft robotic arm; Bionic structure; Position control; Nonlinear modeling
参考文献 References
[1] 刘湘衡,何忠祥. 基于多阶滑模观测器的永磁推进电机无位置传感器控制[J].船电技术,2025,45(08):77-80.
[2] 赵德旭,赵佰亭. 基于协同双反馈ESO的永磁同步电机无位置传感器控制[J/OL].重庆工商大学学报(自然科学版),1-13[2025-08-19].
[3] 蒋振宇,王海涛,李新兆. 基于参数化设计的蝶翅微纳结构仿生设计及应用[J].包装工程,2025,46(14):277-284 +295.
[4] 张禹,张政,赵文川,等. 气动软体机械臂的视觉定位运动控制[J].液压与气动,2025,49(07):116-124.
[5] 杨威. 微纳结构仿生抗滑材料在路面表层施工中的应用[J].中国水运,2025,(14):120-122.
[6] 王晓帆,刘伟志,邱腾飞,等. 高速动车组永磁牵引电机无位置传感器控制[J/OL].电力电子技术,1-8[2025-08-19].
[7] 张坤霖.气动仿生软体机械臂的设计、建模与实验[D].沈阳工业大学,2024.
[8] 沈逸.一种仿静水骨骼气动软体机械臂设计与控制研究[D].华中科技大学,2024.