Open Access Article
Scientific Development Research . 2022; 2: (3) ; 61-64 ; DOI: 10.12208/j.sdr.20220078.
Human-machine dialogue intention system based on Fasttext
基于Fasttext的人机对话意图系统
作者:
张根源 *,
李晓
浙江树人学院信息科技学院 浙江杭州
*通讯作者:
张根源,单位:浙江树人学院信息科技学院 浙江杭州;
发布时间: 2022-08-03 总浏览量: 571
PDF 全文下载
引用本文
摘要
对话意图识别是问答系统研究热点之一,意图识别是问答系统给出答案的前提。本文首先构建Fasttext意图识别模型,并进行模型的优化,进行多重分类研究算法效果。为了减小短文本,词语重复率较低,词共现并不适用,语言规范性不强的文档集的关键词抽取问题,在Fasttext模型输入阶段使用TextRank算法和TF-IDF算法提取文本的关键子句输入训练模型,同时采用TF-IDF提取文本的关键词作为特征补充,提高文本分类的效果。获取用户问题,输入到Fasttext模型进行意图分类,返回最终答案给用户。
关键词: TextRank;Fasttext;卷积神经网络方法
Abstract
Dialogue intent recognition is one of the research hotspots in question answering systems, and intent recognition is the premise for question answering systems to give answers. This paper firstly builds the Fasttext intent recognition model, optimizes the model, and conducts multi-classification to study the effect of the algorithm. In order to reduce short text, the word repetition rate is low, the word co-occurrence is not suitable, and the keyword extraction problem of the document set with low language norm is used in the input stage of the Fasttext model to use the TextRank algorithm and the TF-IDF algorithm to extract the key. The clause is input to the training model, and TF-IDF is used to extract the keywords of the text as a feature supplement to improve the effect of text classification. Get the user question, input it into the Fasttext model for intent classification, and return the final answer to the user.
Key words: TextRank; Fasttext; Convolutional Neural Network Method
参考文献 References
[1]陈永平,杨思春,毛万胜,etal.中文问答系统中基于主题和焦点的问题理解[J]. 计算机系统应用,2011,20(6): 56-60.
[2]张芳芳,马敬东,王小贤,卢乃吉,夏晨曦.国外医学领域自动问答系统研究现状及启示[J].医学信息学杂志,2017,38(03):2-6,25.
[3]文勖.中文问答系统中问题分类及答案候选句抽取的研究[D].哈尔滨:哈尔滨工业大学,2006.
[4]郑实福,刘挺,秦兵,etal.自动问答综述[J].中文信息学报,2002, (06): 46-52.
[5]毛成勇,高慧敏.基于OSEK的任务调度算法改进及实现[J].计算机工程,2010,36(04):233-235.
引用本文
张根源, 李晓, 基于Fasttext的人机对话意图系统[J]. 科学发展研究, 2022; 2: (3) : 61-64.